$L^2$ curvature pinching theorems and vanishing theorems on complete Riemannian manifolds
نویسندگان
چکیده
منابع مشابه
Vanishing Theorems on Covering Manifolds
Let M be an oriented even-dimensional Riemannian manifold on which a discrete group Γ of orientation-preserving isometries acts freely, so that the quotientX = M/Γ is compact. We prove a vanishing theorem for a half-kernel of a Γ-invariant Dirac operator on a Γ-equivariant Clifford module overM , twisted by a sufficiently large power of a Γ-equivariant line bundle, whose curvature is non-degene...
متن کاملVanishing theorems on Hermitian manifolds
We prove the vanishing of the Dolbeault cohomology groups on Hermitian manifolds with ddc-harmonic Kähler form and positive (1, 1)-part of the Ricci form of the Bismut connection. This implies the vanishing of the Dolbeault cohomology groups on complex surfaces which admit a conformal class of Hermitian metrics, such that the Ricci tensor of the canonical Weyl structure is positive. As a coroll...
متن کاملVanishing Theorems on Complete K Ahler Manifolds and Their Applications
Semi-positive line bundles over compact Kahler manifolds have been the focus of studies for decades. Among them, there are several straddling vanishing theorems such as the Kodaira-Nakano Vanishing Theorem, Vesentini-Gigante-Girbau Vanishing Theorems and KawamataViehweg Vanishing Theorem. As a corollary of the above mentioned vanishing theorems one can easily show that a line bundle over compa...
متن کاملVanishing theorems for locally conformal hyperkähler manifolds
Let M be a compact locally conformal hyperkähler manifold. We prove a version of Kodaira-Nakano vanishing theorem for M . This is used to show that M admits no holomorphic differential forms, and the cohomology of the structure sheaf H(OM ) vanishes for i > 1. We also prove that the first Betti number of M is 1. This leads to a structure theorem for locally conformally hyperkähler manifolds, de...
متن کاملQuaternionic Dolbeault complex and vanishing theorems on hyperkähler manifolds
Let (M, I, J,K) be a hyperkähler manifold, dimH M = n, and L a non-trivial holomorphic line bundle on (M, I). Using the quaternionic Dolbeault complex, we prove the following vanishing theorem for holomorphic cohomology of L. If c1(L) lies in the closure K̂ of the dual Kähler cone, then H(L) = 0 for i > n. If c1(L) lies in the opposite cone −K̂, then H(L) = 0 for i < n. Finally, if c1(L) is neith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 2019
ISSN: 0040-8735
DOI: 10.2748/tmj/1576724795